Appearance
proc.c
#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "riscv.h"
#include "spinlock.h"
#include "proc.h"
#include "defs.h"
struct cpu cpus[NCPU];
struct proc proc[NPROC];
struct proc *initproc;
int nextpid = 1;
struct spinlock pid_lock;
extern void forkret(void);
static void freeproc(struct proc *p);
extern char trampoline[];
TIP
helps ensure that wakeups of wait()ing parents are not lost. helps obey the memory model when using p->parent. must be acquired before any p->lock.
struct spinlock wait_lock;
TIP
Allocate a page for each process's kernel stack. Map it high in memory, followed by an invalid guard page.
void
proc_mapstacks(pagetable_t kpgtbl)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++) {
char *pa = kalloc();
if(pa == 0)
panic("kalloc");
uint64 va = KSTACK((int) (p - proc));
kvmmap(kpgtbl, va, (uint64)pa, PGSIZE, PTE_R | PTE_W);
}
}
TIP
initialize the proc table.
void
procinit(void)
{
struct proc *p;
initlock(&pid_lock, "nextpid");
initlock(&wait_lock, "wait_lock");
for(p = proc; p < &proc[NPROC]; p++) {
initlock(&p->lock, "proc");
p->state = UNUSED;
p->kstack = KSTACK((int) (p - proc));
}
}
TIP
Must be called with interrupts disabled, to prevent race with process being moved to a different CPU.
int
cpuid()
{
int id = r_tp();
return id;
}
TIP
Return this CPU's cpu struct. Interrupts must be disabled.
struct cpu*
mycpu(void)
{
int id = cpuid();
struct cpu *c = &cpus[id];
return c;
}
TIP
Return the current struct proc *, or zero if none.
struct proc*
myproc(void)
{
push_off();
struct cpu *c = mycpu();
struct proc *p = c->proc;
pop_off();
return p;
}
int
allocpid()
{
int pid;
acquire(&pid_lock);
pid = nextpid;
nextpid = nextpid + 1;
release(&pid_lock);
return pid;
}
TIP
Look in the process table for an UNUSED proc. If found, initialize state required to run in the kernel, and return with p->lock held. If there are no free procs, or a memory allocation fails, return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if(p->state == UNUSED) {
goto found;
} else {
release(&p->lock);
}
}
return 0;
found:
p->pid = allocpid();
p->state = USED;
TIP
Allocate a trapframe page.
if((p->trapframe = (struct trapframe *)kalloc()) == 0){
freeproc(p);
release(&p->lock);
return 0;
}
TIP
An empty user page table.
p->pagetable = proc_pagetable(p);
if(p->pagetable == 0){
freeproc(p);
release(&p->lock);
return 0;
}
TIP
Set up new context to start executing at forkret, which returns to user space.
memset(&p->context, 0, sizeof(p->context));
p->context.ra = (uint64)forkret;
p->context.sp = p->kstack + PGSIZE;
return p;
}
TIP
free a proc structure and the data hanging from it, including user pages. p->lock must be held.
static void
freeproc(struct proc *p)
{
if(p->trapframe)
kfree((void*)p->trapframe);
p->trapframe = 0;
if(p->pagetable)
proc_freepagetable(p->pagetable, p->sz);
p->pagetable = 0;
p->sz = 0;
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->chan = 0;
p->killed = 0;
p->xstate = 0;
p->state = UNUSED;
}
TIP
Create a user page table for a given process, with no user memory, but with trampoline and trapframe pages.
pagetable_t
proc_pagetable(struct proc *p)
{
pagetable_t pagetable;
TIP
An empty page table.
pagetable = uvmcreate();
if(pagetable == 0)
return 0;
TIP
map the trampoline code (for system call return) at the highest user virtual address. only the supervisor uses it, on the way to/from user space, so not PTE_U.
if(mappages(pagetable, TRAMPOLINE, PGSIZE,
(uint64)trampoline, PTE_R | PTE_X) < 0){
uvmfree(pagetable, 0);
return 0;
}
TIP
map the trapframe page just below the trampoline page, for trampoline.S.
if(mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->trapframe), PTE_R | PTE_W) < 0){
uvmunmap(pagetable, TRAMPOLINE, 1, 0);
uvmfree(pagetable, 0);
return 0;
}
return pagetable;
}
TIP
Free a process's page table, and free the physical memory it refers to.
void
proc_freepagetable(pagetable_t pagetable, uint64 sz)
{
uvmunmap(pagetable, TRAMPOLINE, 1, 0);
uvmunmap(pagetable, TRAPFRAME, 1, 0);
uvmfree(pagetable, sz);
}
TIP
a user program that calls exec("/init") assembled from ../user/initcode.S od -t xC ../user/initcode
uchar initcode[] = {
0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x45, 0x02,
0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x35, 0x02,
0x93, 0x08, 0x70, 0x00, 0x73, 0x00, 0x00, 0x00,
0x93, 0x08, 0x20, 0x00, 0x73, 0x00, 0x00, 0x00,
0xef, 0xf0, 0x9f, 0xff, 0x2f, 0x69, 0x6e, 0x69,
0x74, 0x00, 0x00, 0x24, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
};
TIP
Set up first user process.
void
userinit(void)
{
struct proc *p;
p = allocproc();
initproc = p;
TIP
allocate one user page and copy initcode's instructions and data into it.
uvmfirst(p->pagetable, initcode, sizeof(initcode));
p->sz = PGSIZE;
TIP
prepare for the very first "return" from kernel to user.
p->trapframe->epc = 0;
p->trapframe->sp = PGSIZE;
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
p->state = RUNNABLE;
release(&p->lock);
}
TIP
Grow or shrink user memory by n bytes. Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint64 sz;
struct proc *p = myproc();
sz = p->sz;
if(n > 0){
if((sz = uvmalloc(p->pagetable, sz, sz + n, PTE_W)) == 0) {
return -1;
}
} else if(n < 0){
sz = uvmdealloc(p->pagetable, sz, sz + n);
}
p->sz = sz;
return 0;
}
TIP
Create a new process, copying the parent. Sets up child kernel stack to return as if from fork() system call.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *p = myproc();
TIP
Allocate process.
if((np = allocproc()) == 0){
return -1;
}
TIP
Copy user memory from parent to child.
if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0){
freeproc(np);
release(&np->lock);
return -1;
}
np->sz = p->sz;
TIP
copy saved user registers.
*(np->trapframe) = *(p->trapframe);
TIP
Cause fork to return 0 in the child.
np->trapframe->a0 = 0;
TIP
increment reference counts on open file descriptors.
for(i = 0; i < NOFILE; i++)
if(p->ofile[i])
np->ofile[i] = filedup(p->ofile[i]);
np->cwd = idup(p->cwd);
safestrcpy(np->name, p->name, sizeof(p->name));
pid = np->pid;
release(&np->lock);
acquire(&wait_lock);
np->parent = p;
release(&wait_lock);
acquire(&np->lock);
np->state = RUNNABLE;
release(&np->lock);
return pid;
}
TIP
Pass p's abandoned children to init. Caller must hold wait_lock.
void
reparent(struct proc *p)
{
struct proc *pp;
for(pp = proc; pp < &proc[NPROC]; pp++){
if(pp->parent == p){
pp->parent = initproc;
wakeup(initproc);
}
}
}
TIP
Exit the current process. Does not return. An exited process remains in the zombie state until its parent calls wait().
void
exit(int status)
{
struct proc *p = myproc();
if(p == initproc)
panic("init exiting");
TIP
Close all open files.
for(int fd = 0; fd < NOFILE; fd++){
if(p->ofile[fd]){
struct file *f = p->ofile[fd];
fileclose(f);
p->ofile[fd] = 0;
}
}
begin_op();
iput(p->cwd);
end_op();
p->cwd = 0;
acquire(&wait_lock);
TIP
Give any children to init.
reparent(p);
TIP
Parent might be sleeping in wait().
wakeup(p->parent);
acquire(&p->lock);
p->xstate = status;
p->state = ZOMBIE;
release(&wait_lock);
TIP
Jump into the scheduler, never to return.
sched();
panic("zombie exit");
}
TIP
Wait for a child process to exit and return its pid. Return -1 if this process has no children.
int
wait(uint64 addr)
{
struct proc *pp;
int havekids, pid;
struct proc *p = myproc();
acquire(&wait_lock);
for(;;){
TIP
Scan through table looking for exited children.
havekids = 0;
for(pp = proc; pp < &proc[NPROC]; pp++){
if(pp->parent == p){
TIP
make sure the child isn't still in exit() or swtch().
acquire(&pp->lock);
havekids = 1;
if(pp->state == ZOMBIE){
TIP
Found one.
pid = pp->pid;
if(addr != 0 && copyout(p->pagetable, addr, (char *)&pp->xstate,
sizeof(pp->xstate)) < 0) {
release(&pp->lock);
release(&wait_lock);
return -1;
}
freeproc(pp);
release(&pp->lock);
release(&wait_lock);
return pid;
}
release(&pp->lock);
}
}
TIP
No point waiting if we don't have any children.
if(!havekids || killed(p)){
release(&wait_lock);
return -1;
}
TIP
Wait for a child to exit.
sleep(p, &wait_lock);
}
}
TIP
Per-CPU process scheduler. Each CPU calls scheduler() after setting itself up. Scheduler never returns. It loops, doing: - choose a process to run. - swtch to start running that process. - eventually that process transfers control via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
TIP
The most recent process to run may have had interrupts turned off; enable them to avoid a deadlock if all processes are waiting.
intr_on();
int found = 0;
for(p = proc; p < &proc[NPROC]; p++) {
acquire(&p->lock);
if(p->state == RUNNABLE) {
TIP
Switch to chosen process. It is the process's job to release its lock and then reacquire it before jumping back to us.
p->state = RUNNING;
c->proc = p;
swtch(&c->context, &p->context);
TIP
Process is done running for now. It should have changed its p->state before coming back.
c->proc = 0;
found = 1;
}
release(&p->lock);
}
if(found == 0) {
TIP
nothing to run; stop running on this core until an interrupt.
intr_on();
asm volatile("wfi");
}
}
}
TIP
Switch to scheduler. Must hold only p->lock and have changed proc->state. Saves and restores intena because intena is a property of this kernel thread, not this CPU. It should be proc->intena and proc->noff, but that would break in the few places where a lock is held but there's no process.
void
sched(void)
{
int intena;
struct proc *p = myproc();
if(!holding(&p->lock))
panic("sched p->lock");
if(mycpu()->noff != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(intr_get())
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, &mycpu()->context);
mycpu()->intena = intena;
}
TIP
Give up the CPU for one scheduling round.
void
yield(void)
{
struct proc *p = myproc();
acquire(&p->lock);
p->state = RUNNABLE;
sched();
release(&p->lock);
}
TIP
A fork child's very first scheduling by scheduler() will swtch to forkret.
void
forkret(void)
{
static int first = 1;
TIP
Still holding p->lock from scheduler.
release(&myproc()->lock);
if (first) {
TIP
File system initialization must be run in the context of a regular process (e.g., because it calls sleep), and thus cannot be run from main().
fsinit(ROOTDEV);
first = 0;
TIP
ensure other cores see first=0.
__sync_synchronize();
}
usertrapret();
}
TIP
Atomically release lock and sleep on chan. Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
TIP
Must acquire p->lock in order to change p->state and then call sched. Once we hold p->lock, we can be guaranteed that we won't miss any wakeup (wakeup locks p->lock), so it's okay to release lk.
acquire(&p->lock);
release(lk);
TIP
Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
TIP
Tidy up.
p->chan = 0;
TIP
Reacquire original lock.
release(&p->lock);
acquire(lk);
}
TIP
Wake up all processes sleeping on chan. Must be called without any p->lock.
void
wakeup(void *chan)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++) {
if(p != myproc()){
acquire(&p->lock);
if(p->state == SLEEPING && p->chan == chan) {
p->state = RUNNABLE;
}
release(&p->lock);
}
}
}
TIP
Kill the process with the given pid. The victim won't exit until it tries to return to user space (see usertrap() in trap.c).
int
kill(int pid)
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++){
acquire(&p->lock);
if(p->pid == pid){
p->killed = 1;
if(p->state == SLEEPING){
TIP
Wake process from sleep().
p->state = RUNNABLE;
}
release(&p->lock);
return 0;
}
release(&p->lock);
}
return -1;
}
void
setkilled(struct proc *p)
{
acquire(&p->lock);
p->killed = 1;
release(&p->lock);
}
int
killed(struct proc *p)
{
int k;
acquire(&p->lock);
k = p->killed;
release(&p->lock);
return k;
}
TIP
Copy to either a user address, or kernel address, depending on usr_dst. Returns 0 on success, -1 on error.
int
either_copyout(int user_dst, uint64 dst, void *src, uint64 len)
{
struct proc *p = myproc();
if(user_dst){
return copyout(p->pagetable, dst, src, len);
} else {
memmove((char *)dst, src, len);
return 0;
}
}
TIP
Copy from either a user address, or kernel address, depending on usr_src. Returns 0 on success, -1 on error.
int
either_copyin(void *dst, int user_src, uint64 src, uint64 len)
{
struct proc *p = myproc();
if(user_src){
return copyin(p->pagetable, dst, src, len);
} else {
memmove(dst, (char*)src, len);
return 0;
}
}
TIP
Print a process listing to console. For debugging. Runs when user types ^P on console. No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[USED] "used",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
struct proc *p;
char *state;
printf("\n");
for(p = proc; p < &proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
printf("%d %s %s", p->pid, state, p->name);
printf("\n");
}
}